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Abstract 
This article considers different approaches for autopilot controller gain values adjustment. The correct autopilot 

performance is tested using modeling methods. A variant of land-based autopilot is considered. Examined are 

scenarios of UAV airplanes in level flight. The latter are applicable to tasks such as remote sensing, controlled 

area surveillance, etc. 
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I. INTRODUCTION 
The main mode of unmanned airplane operation is the horizontal flight at a given altitude aiming at earth 

surface surveillance of certain objects and areas. Another purpose of using UAV airplanes in level flight is to 

fulfill remote sensing applications dealing with study of phenomena, geophysical activities, etc. Such a flight is 

usually an autonomous one and is controlled by an onboard computer. Also such flight is usually taking place in 

the zone beyond direct line-of-sight. The autopilot sustains predefined flight route in the presence of 

disturbances. For the qualities of mission being executed one can measure flight trajectory in the ground control 

station. Direct line-of-sight flight may be conducted even without an onboard computer, but instead using a 

land-based computer connected to the ground control station. The land-based computer implements an autopilot 

that controls the flight over a predefined route. This variant is preferred in the discussed setup used for modeling 

of the direct line-of-sight flight. The utilized airplane possesses the following aerodynamic and 

mass/dimensional data:  
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Flight altitude is from 10 m to 500 m, speed – 100 km/h. 

 

II. Autopilot for turning maneuver 
The most suitable autopilot model for the horizontal plane trajectory control is the roll control, according to 

which the turns are carried out using the ailerons and performing banking maneuvers. The aileron deflection law 

can be described as follows: 
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From the above formulae it is obvious that an astatic autopilot controller is discussed. The integral element 

of the controller holds the roll angle traced by the autopilot program, while the pilot on the ground may, in a 

combined mode of control, perform momentary and short-timed adjustments to the roll angle. The combined 

mode of control allows the pilot on the ground to introduce corrections by holding the joystick (manipulator) in 

the ground control station at an inclined angle until the desired corrections have been reached. The discussed 

modeled flight scheme includes manual takeoff and altitude climb up to 100 m with right turn. After this point 

the autopilot engages and controls the aircraft along a circular route and then performs landing. The autopilot 

tuning routine consists of controller gain values selection and following verification of their correctness using 
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modeling of transient processes and modeling of the whole flight. The theory [1] gives tentative formulae for 

choosing the controller gains 
zeeee KKKKK x ,,, ,1


.  

The gain figures 

eK , x

eK


 and ,1eK are defined by time treg of the roll transient process and an 

admissible small overshoot. The results of the theoretical calculations of the gain values are verified using 

modeling methods. Systems that include an integral part apply for the law with speed feedback [1 – p.382-383]. 

This law may be transformed as follows: 

)(2

seteeee ippp    

)(
1

seteeee
р

ip    

These laws are transformed into a more popular form of the gain figures:  
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The roll transient process regulation time is chosen at treg=5s. 

If the controlled airplane‟s mass/dimensional and aerodynamic values are known the gain figures may be 

calculated  

eK  , x
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 and ,1eK  using the following formulae: 
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If the calculated value for 
x

eK


is negative that means the aircraft in this mode has good damping and we may 

set 0x

eK


.  Then only a rudder dumping will be enough for stabilizing the airplane‟s yaw motion. The yaw 

damping will affect both channels, because, due to the interconnection between yaw and roll rotations, damping 

the yaw motion will damp the roll motion too.  

 

The yaw gain is [1 – p. 130]: 
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After substitution with the characteristic quantities for the studies aircraft (taking into account that 
V

y

y
2
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it follows: 
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Fig.1. „Simulink‟ results of the transient process after setting a desired roll angle in the astatic autopilot 

 

The gain figures 

eK  and 

Z

eK  for the simplest control law are derived using equations from the theory [1 – 

p.397], while the course settling time for a small unmanned airplane may be chosen at tstl =25...35s. Pitch 

control over horizontal maneuvers with speed of 28 m/s (100 km/h) is about 
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The command )( programmedZset ZZК   is switched on only under boundary conditions of the Z 

coordinate, defined by the model. Approaching landing this command is engaged when Z<400m. This 

command is defined in the flight program in the ground control station. 

Using modeling approach, the transient process is verified, i.e. the deflections of the ailerons and rudder in 

the presence of typical signal (step-shaped roll angle signal setting).  Fig.1 presents the results of the transient 

process modeling of the lateral motion with mutually conditioned roll and slipping angular motions.  

Overshoot of the desired roll angle in the beginning of the transient process (about t≈2,5s) is due to the 

integral part. When modeling isolated roll motion using integral part in the controller a monotonous process is 

obtained with gradual approach to the desired value without overshoot, but the static error during constant roll 

disturbances. 

 

III. Autopilot for control and stabilization of the flight altitude 
Automatic control and stabilization of the major coordinate is the deviation of the airplane mass center 

along the vertical axis. This deviation in the real aviation is measured by a barometric altimeter, radio-altimeter 

or an inertial system. In the modeling process the altitude is obtained by integrating of the differential equations. 

The longitudinal control channel (pitch control PΔН achieved using the elevator) is maintained satisfactorily 

by the autopilot under most practical disturbances even when implemented using the simplest law: 
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Under constant disturbances the statistical errors depend on the magnitude of the major coordinate gain 
H

eK . The theory [1 – p.292] gives the following optimal gain figure for subsonic unmanned airplanes. This 

figure is appropriate for smooth rate of climb and altitude stabilization of such airplanes: 
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During modeling, the elevator autopilot adjustment requires at least three gains to be estimated in the 

control law: 
Н

vvv KKK z ,,


 

The theory presents formulae [1 – p.135] to calculate the gain z
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The calculations show that the latter equation has several cases: 

1. Two roots, a negative and positive one. The positive root is used 0z
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; 

2. Two negative roots – a very good self-damping of the airplane ( airplaneneed   ) or a small reserve of 

balance along the longitudinal axis (excessive aft center of gravity) or neutrality – we assume 0z
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; 

3. Two complex roots – instability under overload (such case with the unmanned aircraft is not considered). 

Using the recommended algorithm we set the needed value of the relative damping of the oscillations about 
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Coefficients c1, с2 , c3, c4, c5, c6  are determined by the following table using the chosen aerodynamic and 

mass/dimensional characteristics of the unmanned airplane [appendix 2 in 1 – p.432]: 
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The gain figure multiplied by the pitch angle signal is obtained according to formulae [1 – p.193..195]: 
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Under modeling, the increase of this figure leads to oscillations in the middle of the process, while its 

decrease prolongs the process duration. For the considered unmanned airplane according to modeling data, best 

results are  175.0 
optvK . 

On the basis of the conducted calculations and modeling, the ensemble of gain figures of the autopilot APΔН 

is:  
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IV. Modeling of flight “over a circle” 
The flight over a circle is a typical maneuver during takeoff and landing tutoring. In the current case a 

maneuver similar to a “flight in a circle” is modeled using manual takeoff with turn to the right, automatic 

course change with two right turns of 180
0
 and climb up to 300 m, descent and landing in the direction of 

takeoff with minimal deviation of the Z coordinate. The trajectory results are shown on Fig.2-5. 
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Fig.2. Horizontal projection of the trajectory 

 

 
Fig.3. Vertical projection of the trajectory 

 

 
Fig.4. Decreasing of the lateral deviation ΔZ(m) 

before landing on the runway under side-wind from 

the left of the airplane with 2 m/s. The landing is 

programmed with correction to the course. 

Fig.5. Change of flight altitude H(m) in the last 

seconds of automatic landing

 

The modeled typical flight has the following gains for the autopilot: 
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9.0
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When the signal line from the ground control station to the airplane is interrupted it is advisory to have an 

emergency mode of the autopilot. This may be for example restoration of the course and altitude of flight as it 

was before signal drop. 

For the correct work of the autopilot it is required during the modeling process that the angles of attack and 

normal overloads to be verified while executing the flight program. The safe values should not be exceeded. 

Generally, the presence of one inertial element with time constant of 2 s at the output of the flight program is 

enough to fool proof the normal overloads and angles of attack (the autopilot works “softly”). 

 

V. Conclusions 
 The carried out flight modeling confirms the correct choice of gain figures for the autopilot. 

 When the range of flight altitudes and speeds is narrow (as with the unmanned airplanes of the discussed 

class – 50 kg), we may keep the gain figures constant during flight. 
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